``` import cv2 import numpy as np # load image img = cv2.imread('path/to/image') # convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # apply thresholding thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] # find contours and get minimum area contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) min_area = 10000000 # arbitrary value to filter out small contours for c in contours: area = cv2.contourArea(c) if area < min_area: break # draw contour with color color = (0, 255, 0) cv2.drawContour(img, [c], -1, color) # show image and contour cv2.imshow('Image', img) cv2.circle(img, (int(c[1][0]), int(c[1][1])), 10, (0, 255, 0), -1) cv2.waitKey(0) cv2.destroyAllWindows() ``` You can adjust the `min_area` value to filter out smaller or larger contours as needed.