Oddbean new post about | logout
 I started writing some drafts of how I could create a decentralized platform for publishing scientific(or not) articles using #nostr . Some problems I need to solve:

- How to index articles for listing, classification and search
- Will I have to have a proprietary relay to guarantee that data will not be lost?
- How to guarantee a minimum quality of articles? perhaps a classification system by the users themselves to sort

Anyway, just drafts, if anyone reading this has any ideas, write them here pls

#grownostr #asknostr #plebchain 
 Perhsps IPFS for data storage? (don't know if that is really a viable option but nice in theory at least) 
 It's a super viable option, there is already a solution using this protocol: sci-hub. I think one of the biggest challenges will be this distribution, I know few nodes that have implemented the search engine 
 Result of an orientating session with ChatGPT:

When dealing with a growing and changing index on a decentralized system like IPFS, you need a data structure that can efficiently handle updates, additions, and deletions. Several data structures are well-suited for such a use case:

### 1. **Merkle Trees and DAGs (Directed Acyclic Graphs)**
IPFS itself is based on Merkle DAGs, which allow for efficient and verifiable updates. This structure can accommodate dynamic data while ensuring integrity and traceability of changes.

### 2. **CRDTs (Conflict-Free Replicated Data Types)**
CRDTs are designed for distributed systems where multiple replicas can independently update the data structure and later converge to a consistent state. These are particularly useful for maintaining an index in a decentralized manner.

### 3. **Append-Only Logs**
An append-only log can record changes to the index over time, which can then be aggregated and searched. This approach makes it easy to maintain an evolving dataset.

### 4. **IPLD (InterPlanetary Linked Data)**
IPLD is a data model for representing complex data structures on IPFS. It allows you to create linked data structures that can evolve over time.

### Detailed Approach Using IPLD and Merkle DAGs

#### **Using Merkle DAGs for a Dynamic Index**

1. **Initial Setup:**
   - Split the index into manageable chunks.
   - Store each chunk on IPFS and get the CIDs.
   - Create a Merkle DAG where each node points to the chunks (leaves).

2. **Updating the Index:**
   - When updating, create new chunks if necessary.
   - Update the Merkle DAG to point to the new chunks.
   - Publish the new root CID of the DAG on Nostr.

#### **Implementation Steps:**

##### 1. Chunking and Storing on IPFS
```python
import ipfshttpclient

client = ipfshttpclient.connect('/dns/localhost/tcp/5001/http')

def chunk_and_store_index(index_data, chunk_size=1024):
    chunks = [index_data[i:i + chunk_size] for i in range(0, len(index_data), chunk_size)]
    cids = [client.add_str(chunk) for chunk in chunks]
    return cids
```

##### 2. Creating a Merkle DAG
```python
import json

def create_merkle_dag(cids):
    dag = {'chunks': cids}
    dag_cid = client.add_str(json.dumps(dag))
    return dag_cid
```

##### 3. Updating the Index
```python
def update_index(new_data, existing_cids, chunk_size=1024):
    new_chunks = [new_data[i:i + chunk_size] for i in range(0, len(new_data), chunk_size)]
    new_cids = [client.add_str(chunk) for chunk in new_chunks]
    all_cids = existing_cids + new_cids
    return create_merkle_dag(all_cids)
```

##### 4. Publishing Metadata on Nostr
```python
import nostr
from nostr.event import Event

def publish_index_metadata(dag_cid):
    relay_url = 'wss://your.nostr.relay'
    client = nostr.Client()
    client.connect(relay_url)

    metadata_event = Event(kind=1, content={'dag_cid': dag_cid})
    client.publish_event(metadata_event)

# Example usage
index_data = "Your initial large index data..."
cids = chunk_and_store_index(index_data)
dag_cid = create_merkle_dag(cids)
publish_index_metadata(dag_cid)
```

##### 5. Fetching and Assembling the Index on Clients
```python
def fetch_index_metadata():
    relay_url = 'wss://your.nostr.relay'
    client = nostr.Client()
    client.connect(relay_url)

    events = client.get_events(kind=1, limit=1)  # Get the latest event of kind=1
    if events:
        return events[0].content['dag_cid']
    return None

def fetch_and_assemble_index(dag_cid):
    dag = json.loads(client.cat(dag_cid).decode('utf-8'))
    index_data = ""
    for cid in dag['chunks']:
        index_data += client.cat(cid).decode('utf-8')
    return index_data

# Example usage
dag_cid = fetch_index_metadata()
if dag_cid:
    index_data = fetch_and_assemble_index(dag_cid)
    print(index_data)
```

### Summary

- **Chunking and Storing**: Split the index into chunks and store them on IPFS.
- **Merkle DAG**: Use a Merkle DAG to link the chunks, providing an updatable structure.
- **Publishing Metadata**: Use Nostr to share the latest DAG root CID.
- **Client-Side Fetching**: Clients fetch the DAG and reconstruct the index.

This approach allows the index to grow and change dynamically while ensuring that clients can always access the latest version in a decentralized manner. Using IPLD and Merkle DAGs aligns well with the principles of IPFS, providing a scalable and efficient way to manage large, evolving datasets.